Answer: odd
Explanation:
A function is even if for any input value x and -x there is the same output value y. In other words, a function is even if:
![f (-x) = f (x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hw5e9jsxzuowzazo2ihovfhy1tkuzzajxm.png)
A function is odd if it is true that:
![f (-x) = -f (x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fb7zx9n6drdxkd5dpwurer6otr0ge87f52.png)
Then we must test if
for the function:
![f(x)=-2x - 5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h981sgllr7qbwdu3q6vf3600a7qp4qj0hl.png)
![f(-x)=-2(-x) - 5(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7wzb6xe1qh4jaxca1xu9vt6nfzgt2a5nda.png)
![f(-x)=2x + 5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63l02hanrob8g4ova91joos4btczgo5q62.png)
So
![f(-x) \\eq f(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pep4lfu4gxqj0oh22x7e5e600ub37wyqpb.png)
The function is not even
Now we must test if
for the function.
![f(-x)=-2(-x) - 5(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7wzb6xe1qh4jaxca1xu9vt6nfzgt2a5nda.png)
![f(-x)=2x + 5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/63l02hanrob8g4ova91joos4btczgo5q62.png)
and
![f(x)=-2x - 5x](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h981sgllr7qbwdu3q6vf3600a7qp4qj0hl.png)
So
Finally the function is odd