ANSWER
![2 √(3) i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/itdwj10fn5ot55impd9l8uokikoi6bs1bw.png)
EXPLANATION
We we're given that, the real part of the complex number is 2.
Let the imaginary part be y.
Then the complex number is
![z = 2 + yi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gmvp2x3fn3yspaa2jrxklfuf5x45dxmy01.png)
Also, we have that, the modulus is 4.
The modulus is given by the formula;
![|z| = \sqrt{ {x}^(2) + {y}^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f9p9wst5zaahl4d8f8ib035n5d5yza8g6o.png)
This implies that,
![4 = \sqrt{ {2}^(2) + {y}^(2) }](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ixz3416n8c7ojg2jgtdwsi0jhxgi2166tz.png)
We square both sides to obtain;
![{4}^(2) = 4 + {y}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6t9u4fzu307k9flur61g9oliifteuqzuad.png)
![16 - 4 = {y}^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/uy5mqzqktbor3qxtjmhd3e66wxpjh93ucr.png)
![{y}^(2) = 12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/au5i3k96bd68dmy96o42q23ljqxb75yuc6.png)
![y = √(12) = 2 √(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6hjj3989ch2nq46ku4rb10gvoatqwp5jh.png)
Therefore the complex part is
![2 √(3) i](https://img.qammunity.org/2020/formulas/mathematics/middle-school/itdwj10fn5ot55impd9l8uokikoi6bs1bw.png)