186k views
0 votes
Prove that cos 3A = cos (2A+A)

cos 3A = 4 cos³A – 3cosA..... Where from the cos A ....does sin A * cos A give cos A??


Cos 3A = cos (2A +A)
Cos 2A cos A - Sin2A sinA
(2cos²A-1)cosA-(2sinA cos A) sinA
2cos³A - cos A - 2 sin²A cos A
2 cos³A-cos A - 2(1-cos²A)cos A
2 cos³A - cos A - 2cos A + 2 cos³A

Cos3A = 4cos³A-3cos A​

User Onur Tuna
by
7.0k points

1 Answer

1 vote

Not sure what the question is, but I guess it's to prove that


\cos3A=4\cos^3A-3\cos A

Expand the left side as


\cos3A=\cos(2A+A)=\cos2A\cos A-\sin2A\sin A

and use the double angle identities to write


\cos3A=(\cos^2A-\sin^2A)\cos A-2\sin^2A\cos A


\cos3A=\cos^3A-3\sin^2A\cos A

Recall the Pythagorean identity:


\cos3A=\cos^3A-3(1-\cos^2A)\cos A


\cos3A=\cos^3A-3\cos A+3\cos^3A


\implies\cos3A=4\cos^3A-3\cos A

as required.

User Vinay Rathod
by
7.4k points

Related questions

asked Oct 26, 2024 145k views
Toshiyuki asked Oct 26, 2024
by Toshiyuki
7.9k points
1 answer
4 votes
145k views
asked Sep 13, 2021 55.7k views
Blocks asked Sep 13, 2021
by Blocks
8.6k points
1 answer
5 votes
55.7k views
asked Oct 18, 2022 16.0k views
Tschuege asked Oct 18, 2022
by Tschuege
8.0k points
1 answer
4 votes
16.0k views