96.0k views
4 votes
Show work please.

solve system of equations using matrices.

Show work please. solve system of equations using matrices.-example-1

1 Answer

5 votes

Answer:

(t, t -1, t)

Explanation:

You have three unknowns but only 2 equations, so you can't really SOLVE this...you can get a solution with a variable still in it (I forget what this is called. I think it refers to infinite many solutions). Here's how it works:

Set up your matrix:


\left[\begin{array}{ccc}1&-2&1\\2&-1&-1\\\end{array}\right] \left[\begin{array}{ccc}2\\1\\\end{array}\right]

You want to change the number in position 21 (the 2 in the scond row) to a 0 so you have y and z left. Do this by multiplying the top row by -2 then adding it to the second row to get that 2 to become a 0. Multiplying in a -2 to the top row gives you:


\left[\begin{array}{ccc}-2&4&-2\\2&-1&-1\\\end{array}\right]\left[\begin{array}{ccc}-4\\1\\\end{array}\right]

Then add, keeping the first row the same and changing the second to reflect the addition:


\left[\begin{array}{ccc}-2&4&-2\\0&3&-3\\\end{array}\right] \left[\begin{array}{ccc}-4\\-3\\\end{array}\right]

The second equation is this now:

3y - 3z = -3. Solving for y gives you y = z - 1. Let's let z = t (some random real number that will make the system true. Any number will work. I'll show you at the end. Just bear with me...)

lf z = t, and if y = z - 1, then y = t - 1. So far we have that y = t - 1 and z = t. Now we solve for x:

From the first equation in the original system,

x - 2y + z = 2. Subbing in t - 1 for y and t for z:

x - 2(t - 1) + t = 2. Simplify to get

x - 2t + 2 + t = 2 and x - t = 0, and x = t. So the solution set is (t, t - 1, t). Picking a random value for t of, let's say 2, sub that in and make sure it works. If:

x - 2y + z = 2, then t - 2(t - 1) + t = 2 becomes t - 2t + 2 + t = 2, and with t = 2, 2 - 2(2) + 2 + 2 = 2. Check it: 2 - 4 + 4 = 2 and 2 = 2. You could pick any value for t and it will work.

User Kristian Mo
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories