223k views
4 votes
3,125=5^-10+3x What does x equal

User Argenis
by
7.9k points

2 Answers

3 votes

Answer:

x = 30517578124/29296875

Explanation:

Solve for x:

3125 = 3 x + 1/9765625

Put each term in 3 x + 1/9765625 over the common denominator 9765625: 3 x + 1/9765625 = (29296875 x)/9765625 + 1/9765625:

3125 = (29296875 x)/9765625 + 1/9765625

(29296875 x)/9765625 + 1/9765625 = (29296875 x + 1)/9765625:

3125 = (29296875 x + 1)/9765625

3125 = (29296875 x + 1)/9765625 is equivalent to (29296875 x + 1)/9765625 = 3125:

(29296875 x + 1)/9765625 = 3125

Multiply both sides of (29296875 x + 1)/9765625 = 3125 by 9765625:

(9765625 (29296875 x + 1))/9765625 = 9765625×3125

(9765625 (29296875 x + 1))/9765625 = 9765625/9765625×(29296875 x + 1) = 29296875 x + 1:

29296875 x + 1 = 9765625×3125

9765625×3125 = 30517578125:

29296875 x + 1 = 30517578125

Subtract 1 from both sides:

29296875 x + (1 - 1) = 30517578125 - 1

1 - 1 = 0:

29296875 x = 30517578125 - 1

30517578125 - 1 = 30517578124:

29296875 x = 30517578124

Divide both sides of 29296875 x = 30517578124 by 29296875:

(29296875 x)/29296875 = 30517578124/29296875

29296875/29296875 = 1:

Answer: x = 30517578124/29296875

User Haukman
by
8.2k points
3 votes

For this case:

We rewrite the equation as:


5 ^ {- 10 + 3x} = 3.125

We find ln on both sides of the equation to remove the exponent variable:


ln (5 ^ {- 10 + 3x}) = ln (3,125)

Applying properties of logarithm we have:


(-10 + 3x) ln (5) = ln (3.125)

We apply distributive property:


-10ln (5) + 3xln (5) = ln (3,125)

We clear the value of "x":


3xln (5) = ln (3,125) + 10ln (5)\\x = \frac {ln (3.125)} {3ln (5)} + \frac {10ln (5)} {3ln (5)}\\x = \frac {ln (3.125)} {3ln (5)} + \frac {10} {3}

ANswer:


x = \frac {ln (3.125)} {3ln (5)} + \frac {10} {3}

User Wilber Paredes
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories