38.6k views
3 votes
Which pair of functions is not a pair of inverse functions?

A. f(x)= x+1/6 and g(x)= 6x-1
B. f(x)= x-4/19 and g(x)= 19x+4
C. f(x)= x5 and g(x)= 5√x
D. f(x)= x/x + 20 and g(x)= 20x/x-1

1 Answer

4 votes

ANSWER

A,B, and C

Step-by-step explanation

If


f(g(x))=g(f(x))=x

then f and g are inverse functions.

A.


f(x) = (x + 1)/(6)


g(x) = 6x - 1


f(g(x)) = (6x - 1 + 1)/(6) = (6x)/(6) = x

B.


f(x) = (x - 4)/(19)


g(x) = 19x + 4


f(g(x)) = (19x + 4 - 4)/(19) = (19x)/(19) = x

C.


f(x) = {x}^(5)


g(x) = \sqrt[5]{x}


f(g(x)) = (\sqrt[5]{x})^(5) = x

D.


f(x) = (x)/(x + 20 )


g(x) = (20x)/(x - 1)


f(g(x)) = ( (20x)/(x - 1) )/( (20x)/(x - 1) + 20) = (20x)/(40x - 20) = (x)/(2x - 1)

The correct answers are A, B , C

User Bimzee
by
5.2k points