171k views
1 vote
Use power series to find two linearly independent solutions of y''-2xy'+4y = 0

User Dara
by
8.7k points

1 Answer

3 votes

Assume a general solution of the form


y(x)=\displaystyle\sum_(n\ge0)a_nx^n

with derivatives


y'(x)=\displaystyle\sum_(n\ge0)na_nx^(n-1)=\sum_(n\ge1)na_nx^(n-1)


y''(x)=\displaystyle\sum_(n\ge0)n(n-1)a_nx^(n-2)=\sum_(n\ge2)n(n-1)a_nx^(n-2)

Substituting into the ODE gives


\displaystyle\sum_(n\ge2)n(n-1)a_nx^(n-2)-2\sum_(n\ge1)na_nx^n+4\sum_(n\ge0)a_nx^n=0

The first sum starts with degree 0; the second starts with degree 1; and the third starts with degree 0. So remove the first term from the first and third sums, then consolidate everything into one sum by shifting indices as needed.

First sum:


\displaystyle\sum_(n\ge2)n(n-1)a_nx^(n-2)=2a_2+\sum_(n\ge3)n(n-1)a_nx^(n-2)


\displaystyle\sum_(n\ge2)n(n-1)a_nx^(n-2)=2a_2+\sum_(n\ge1)(n+2)(n+1)a_(n+2)x^n

Third sum:


\displaystyle\sum_(n\ge0)a_nx^n=a_0+\sum_(n\ge1)a_nx^n

So the ODE can be expressed as


\displaystyle\left(2a_2+\sum_(n\ge1)(n+2)(n+1)a_(n+2)x^n\right)-2\sum_(n\ge1)na_nx^n+4\left(a_0+\sum_(n\ge1)a_nx^n\right)=0


\displaystyle2a_2+4a_0+\sum_(n\ge1)\bigg((n+2)(n+1)a_(n+2)+(4-2n)a_n\bigg)x^n=0

Then the coefficients are given by the recurrence,


\begin{cases}a_0=a_0\\a_1=a_1\\2(2-n)a_n+(n+2)(n+1)a_(n+2)=0&\text{for }n\ge0\end{cases}

Notice that we should have
a_0\\eq0 and
a_1\\eq0 in order to get non-zero solutions.

For
n=2, we would find that
a_4=0, which would imply that
a_n=0 for all even
n\ge2. Then the even-indexed terms in the series contribute one solution,


y_1(x)=a_0+a_2x^2=a_0(1-2x^2).

On the other hand, for odd
n\ge1 we have


a_(n+2)=(2(n-2))/((n+2)(n+1))a_n

With
n=1:


a_3=(2\cdot(-1))/(3\cdot2)a_1=-\frac2{3!}a_1

With
n=3:


a_5=(2\cdot1)/(5\cdot4)a_3=-(2^2\cdot1)/(5!)a_1

With
n=5:


a_7=(2\cdot3)/(7\cdot6)a_5=-(2^3\cdot3\cdot1)/(7!)a_1

So the general pattern for
n=2k+1,
k\ge1, is


a_(2k+1)=-(2^k\prod\limits_(i=1)^(k-1)(2i-1))/((2k+1)!)a_1

and we get a second (linearly independent) solution


y_2(x)=a_1x+\displaystyle\sum_(k\ge1)a_(2k+1)x^(2k+1)

User JFerro
by
7.9k points

No related questions found