109k views
2 votes
I'm confused! Please explain!

I'm confused! Please explain!-example-1

1 Answer

3 votes

First, use the fact that
\tan x is
\pi-periodic. This means
\tan(x+\pi)=\tan x for all
x, and in particular


\tan\frac{9\pi}8=\tan\left(\frac\pi8+\pi\right)=\tan\frac\pi8

Now, recall the half-angle identities,


\sin^2\frac x2=\frac{1-\cos x}2


\cos^2\frac x2=\frac{1+\cos x}2


\implies\tan^2\frac x2=(\sin^2\frac x2)/(\cos^2\frac x2)=(1-\cos x)/(1+\cos x)

When we take the square root, we get two possible values, but we know
\tan x>0 for
0<x<\frac\pi2, so we know to take the positive square root:


\tan\frac x2=\sqrt{(1-\cos x)/(1+\cos x)}

So we have


\tan\frac\pi8=\sqrt{(1-\cos\frac\pi4)/(1+\cos\frac\pi4)}=\sqrt{\frac{1-\frac1{\sqrt2}}{1+\frac1{\sqrt2}}}=√((\sqrt2-1)^2)


\boxed{\tan\frac\pi8=\sqrt2-1}

User Raeq
by
6.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.