161k views
2 votes
What is the perimeter and area of a triangle?
J(-5,6). K(3,4) L(-2,1)

User Jae Carr
by
8.2k points

1 Answer

6 votes

Answer:

Perimeter of triangle JKL:
2 √(17) + 2√(34).

Area of triangle JKL: 17.

Explanation:

None of the three sides of triangle JKL is parallel to either the x-axis or the y-axis. Apply the Pythagorean Theorem to find the length of each side.


\rm JK = \sqrt{(3 - (-5))^(2) + (4- 6)^(2)} = \sqrt{8^(2) + (-2)^(2)} = √(68) = 2√(17).


\rm JL = \sqrt{(-2 - (-5))^(2) + (1- 6)^(2)} = \sqrt{3^(2) + (-5)^(2)} = √(34).


\rm KL = \sqrt{(-2 - 3)^(2) + (1-4)^(2)} = \sqrt{(-5)^(2) + (-3)^(2)} = √(34).

The perimeter of triangle JKL will be:


\rm JK + JL + KL = 2√(17) + √(34) + √(34) = 2 √(17) + 2√(34).

Finding the Area of JKL:

Method One

In case you realized that
\rm JK : JL : KL = √(2) : 1 : 1, which makes JKL an isosceles right triangle:

Area of a right triangle:


\begin{aligned}\displaystyle \rm Area &= (1)/(2) * \text{First Leg} * \text{Second Leg}\\ &=(1)/(2) * √(34)*√(34)\\&= 17\end{aligned}.

Method Two

Alternatively, apply the Law of Cosines to find the cosine of any of the three internal angles. This method works even if the triangle does not contain a right angle.

Taking the cosine of angle K as an example:


\displaystyle\begin{aligned}\rm cos(K)&=\frac{(\text{First Adjacent Side})^(2) + (\text{Second Adjacent Side})^(2)-(\text{Opposite Side})^(2)}{2* (\text{First Adjacent Side})*(\text{Second Adjacent Side})}\\&\rm =((JK)^(2) + (JL)^(2) -(KL)^(2))/(2* JK * JL)\\&=((2√(17))^(2)+(√(34))^(2)-(√(34))^(2))/(2*√(34) *(2√(17)))\\ &=(2^(2)* 17)/(2* √(2)*√(17)* 2* √(17))\\&=(1)/(√(2))\end{aligned}.

Apply the Pythagorean Theorem to find the sine of angle K:


\displaystyle \rm sin(K) = \sqrt{1 - (cos(K))^(2)} = \sqrt{1 - \left((1)/(√(2))\right)^(2) } = \sqrt{(1)/(2)} = (1)/(√(2)) = (√(2))/(2).

The height of JKL on the side JK will be:


\displaystyle \rm KL \cdot sin(K) = √(34) * (√(2))/(2) = (√(68))/(2) = (2√(17))/(2) = √(17).

What will be the area of JKL given its height
√(17) on a base of length
2√(17)?


\displaystyle \rm Area = (1)/(2) * Base* Height = (1)/(2)* (2√(17))* √(17) = 17.

User The Cook
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories