Answer:
x = 0
Explanation:
Since the product is not equal zero, we need to multiply both parenthesis first:
![(x-3)(x+9) =-27](https://img.qammunity.org/2020/formulas/mathematics/college/1jv0nax73gr4miae568fo5hl6g6bshdeiq.png)
![x*x+x*9+(-3)*x+(-3)*9=27](https://img.qammunity.org/2020/formulas/mathematics/college/9k844ghivzqwgp0ujdk6ay19iwfpiag318.png)
![x^2+9x-3x-27=27](https://img.qammunity.org/2020/formulas/mathematics/college/u82klmaw1ij9wmfvotysoe8siatrtmdnte.png)
![x^2+6x-27=27](https://img.qammunity.org/2020/formulas/mathematics/college/g9vh8bgnx2gmh71uwgsfhyk05av3qehuxy.png)
Add 27 from both sides:
![x^2+6x-27+27=-27+27](https://img.qammunity.org/2020/formulas/mathematics/college/lwj5lfejknhjrch3tzfuqgqn8sqz023yws.png)
![x^2-6x=0](https://img.qammunity.org/2020/formulas/mathematics/college/wtk18b04d95ryh1tqdnnbvqr8woxd9oanc.png)
Factor
out:
![x(x+6)=0](https://img.qammunity.org/2020/formulas/mathematics/college/3l16ssybo573rvdmp5qmxyuifkn5yeqdxo.png)
Apply the zero product:
![x=0,x+6=0](https://img.qammunity.org/2020/formulas/mathematics/college/rtb9ac0xuqgbfd8jppu91zzhvboe4jn8f1.png)
![x=0,x=-6](https://img.qammunity.org/2020/formulas/mathematics/college/o0w7ir46egr67gufk5mscfnu3ao8q6lbw7.png)
The solutions of the equation are
and
.
We can conclude that the correct answer is x = 0.