Step-by-step Answer:
One of the properties of a least-squares regression line (line of best fit) is that the line always passes through the point (xbar, ybar).
Assuming the given "line of best fit" is a least-squares line, then we are given
a slope m=1.885 passing through (x0,y0)=(3.448,12.318).
Applying the standard point-slope formula:
(y-y0) = m (x-x0)
we get
y-12.318 = 1.885(x-3.448)
Expand and simplify,
y=1.885x -1.885*3.448 + 12.318, or
y=1.885(x) + 5.81852
(numbers to be rounded as precision dictates).