88.3k views
5 votes
Please Help Quickly!!!

Find the limit if f(x) = x^3

Please Help Quickly!!! Find the limit if f(x) = x^3-example-1

1 Answer

5 votes

Answer:

Option b. 12

Explanation:

This exercise asks us to find the derivative of a function using the definition of a derivative.

Our function is
f(x) = x^(3). Therefore:


f(2+h) = (2+h)^(3)


f(2) = (2)^(3) = 8

Then:


\lim_(h \to \0) (f(2+h)-f(2))/(h)=\lim_(h \to \0) ((2+h)^(3)-8)/(h)

Expanding:


\lim_(h \to \0) ((2+h)^(3)-8)/(h) =\lim_(h \to \0) (8+ h^(3) +6h(2+h) -8)/(h) =\lim_(h \to \0) (h^(3) +6h(2+h))/(h)


\lim_(h \to \0) (h^(3)+ 6h(2+h))/(h) =\lim_(h \to \0) h^(2) + 6(2+h)

Now, if x=0:


\lim_(h \to \0) (f(2+h)-f(2))/(h) = (0)^(2) +6(2+0) = 12

User Mario Plantosar
by
5.6k points