Answer:
The correct answer is 64a^6 - 27b^4
Explanation:
It is given an expression,
(4a^2 - 3b^2)(16a^4 + 12a^2b^2 + 9b^4)
To find the correct answer
(4a^2 - 3b^2)(16a^4 + 12a^2b^2 + 9b^4) can be written as,
(4a^2 - 3b^2)(16a^4 + 12a^2b^2 + 9b^4) = 4a^2 * (16a^4 + 12a^2b^2 + 9b^4) - 3b^2(16a^4 + 12a^2b^2 + 9b^4)
= 64a^6 + 48a^4b^2 + 36a^2b^4 - 48a^4b^2 - 36a^2b^4 - 27b^4
= 64a^6 - 27b^4 + 48a^4b^2 - 48a^4b^2 + 36a^2b^4 - 36a^2b^4
= 64a^6 - 27b^4
Therefore the correct answer is 64a^6 - 27b^4