63.9k views
3 votes
What is (x+y)(x^2-xy+y^2)

1 Answer

2 votes

Hello!

The answer is:


(x+y)(x^(2)-xy+y^(2))=x^(3)+y^(3)

Why?

To find the resultant expression, we need to apply the distributive property.

It can be defined by the following way:


(a+b)(c+d)=ac+ad+bc+bd

Also, we need to remember how to add like terms: The like terms are the terms that share the same variable and exponent, for example:


x+x+x^(2)=2x+x^(2)

We were able to add only the two first terms since they were like terms (they share the same variable and the same exponent)

So , we are given the expression:


(x+y)(x^(2)-xy+y^(2))

Then, applying the distributive property, we have:


(x+y)(x^(2)-xy+y^(2))=x*x^(2)-x*xy+x*y^(2)+y*x^(2)-y*xy+y*y^(2)\\\\x*x^(2)-x*xy+x*y^(2)+y*x^(2)-y*xy+y*y^(2)=x^(3)-x^(2)y+xy^(2)+yx^(2)-xy^(2)+y^(3)\\\\x^(3)-x^(2)y+xy^(2)+yx^(2)-xy^(2)+y^(3)=x^(3)+y^(3)

Hence, the answer is:


(x+y)(x^(2)-xy+y^(2))=x^(3)+y^(3)

Have a nice day!

User Jose Osorio
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories