Answer:
Option B.

Explanation:
step 1
Find the central angle of the shaded sector
Remember that the diameter divide the circle into two equal parts ( 180 degrees each part)
so
Let
x -----> the measure of the central angle of the shaded sector
∠x+72°=180°
∠x=180°-72°=108°
step 2
Find the area of the circle
The area of the circle is

we have

assume

substitute


step 3
Find the area of the shaded sector
Remember that the area of the complete circle subtends a central angle of 360 degrees
so
by proportion find the area of a sector by a central angle of 108 degrees
