194k views
4 votes
NEED HELP ANSWERING THIS QUESTION

NEED HELP ANSWERING THIS QUESTION-example-1

2 Answers

3 votes

Answer:


\large\boxed{B.\ (x\sqrt2)/(2y)}

Explanation:


√(9x^2):√(18y^2)=(√(9x^2))/(√(18y^2))\qquad\text{use}\ √(ab)=√(a)\cdot√(b)\\\\=(\sqrt9\cdot√(x^2))/(√(18)\cdot√(y^2))\qquad\text{use}\ √(a^2)=a\ \text{for}\ a\geq0\\\\=(3\cdot x)/(√(9\cdot2)\cdot y)=(3x)/(\sqrt9\cdot\sqrt2\cdot y)=(3x)/(3y\sqrt2)\qquad\text{cancel 3}\\\\=(x)/(y\sqrt2)\cdot(\sqrt2)/(\sqrt2)\qquad\text{use}\ √(a)\cdot√(a)=a\\\\=(x\sqrt2)/(2y)

User Wissa
by
7.2k points
7 votes

Answer:

B.
(x√(2))/(2y)

Explanation:

We want to divide
√(9x^2) by
√(18y^2).

This becomes:


(√(9x^2))/(√(18y^2))


(√((3x)^2))/(√(2(3y)^2))

We remove the perfect squares to obtain


(3x)/(3y√(2))

Cancel out the common factors to get;


(x)/(y√(2))

Rationalize the denominator to get:


(x)/(y√(2))* (√(2))/(√(2))


(x√(2))/(2y)

The correct answer is B

User Danny Hepple
by
5.5k points