168k views
5 votes
What’s the least common multiple of x^2-2x-15 and x^2+2x-3?

User Jvatic
by
7.7k points

1 Answer

2 votes

Answer:


\large\boxed{LCM(x^2-2x-15,\ x^2+2x-3)=(x+3)(x-5)(x-1)}\\\boxed{=x^3-3x^2-13x+15}

Explanation:


x^2-2x-15=x^2+3x-5x-15=x(x+3)-5(x+3)=(x+3)(x-5)\\\\\\x^2+2x-3=x^2+3x-1x-3=x(x+3)-1(x+3)=(x+3)(x-1)\\\\LCM(x^2-2x-15,\ x^2+2x-3)=(x+3)(x-5)(x-1)\\\\=(x^2-2x-15)(x-1)\qquad\text{use FOIL}\\\\=(x^2)(x)+(x^2)(-1)+(-2x)(x)+(-2x)(-1)+(-15)(x)+(-15)(-1)\\\\=x^3-x^2-2x^2+2x-15x+15\qquad\text{combine like terms}\\\\=x^3+(-x^2-2x^2)+(2x-15x)+15\\\\=x^3-3x^2-13x+15

User TommyN
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories