Answer:
option A and B are correct.
Explanation:
Given:
![p(t) = (64)/(1 + 11e^(-.08t) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/780nog2vgzs9csruwbmza94pzlzkgwmho6.png)
Option A:
![\lim_(t \to \infty) (64)/(1 + 11e^(-.08(\infty)) ) = (64)/(1 + 0) = 64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vgwjsoq2mmtqdimemrv6yazq1h80jdmyu0.png)
Option A is true,
Option B:
![P(0) = (64)/(1 + 11) = 5.33](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yb354ai9gm0juy7op38rxocls90071iqoc.png)
Option B is also true.
Option C:
![P(t + 1) = (64)/(1 + 11e^(-.08(t + 1)) ) = (64)/(1 + 10.15e^(-.08t) ) \\1.08 · P(t) = (64 · 1.08 )/(1 + 11e^(-.08t) ) = (69.12)/(1 + 11e^(-.08t) )](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w07gnre2q9jg6x7302y1dxsm07jep5kknf.png)
P(t + 1) ≠ 1.08 · P(t)
Option C is incorrect.
Option D: It is also incorrect, because according to option 2 earth's population will not grow exponentially without Bound.