197k views
5 votes
Please help me thank you

Please help me thank you-example-1
User Csvan
by
8.2k points

1 Answer

4 votes

Answer:

option C Only second equation is an identity is correct.

Explanation:

1)


1 +(cos^2\theta)/(cot^2\theta(1-sin^2\theta))= 9 sec^2\theta

We need to prove this identity.

We know:


cos^2\theta + sin^2\theta = 1\\=> cos^2\theta = 1- sin^2\theta

and


(1)/(cot^2\theta ) = tan^2\theta \\and\\tan^2\theta = (sin^2\theta)/(cos^2\theta)

Using these to solve the identity


1 +(cos^2\theta)/(cot^2\theta(cos^2\theta))= 9 sec^2\theta\\1 +(1)/(cot^2\theta) = 9 sec^2\theta\\1+tan^2\theta = 9 sec^2\theta\\1+(sin^2\theta)/(cos^2\theta) = 9sec^2\theta\\\\(cos^2\theta+sin^2\theta)/(cos^2\theta) = 9sec^2\theta\\(1)/(cos^2\theta)=9sec^2\theta \\sec^2\theta \\eq 9sec^2\theta

So, this is not an identity.

2)


20sin\theta((1)/(sin\theta) -(cot\theta)/(sec\theta)) =20sin^2\theta\\

We need to prove this identity.

We know:


cot\theta = (cos\theta)/(sin\theta) \\and \\sec\theta=(1)/(cos\theta) \\so,\,\, (cot\theta)/(sec\theta)= ((cos\theta)/(sin\theta))/((1)/(cos\theta))  \\Solving\\ (cot\theta)/(sec\theta) =(cos^2\theta)/(sin\theta)

Using this to solve the identity


20sin\theta((1)/(sin\theta) -(cot\theta)/(sec\theta)) =20sin^2\theta\\\\Putting\,\,values\,\,\\ 20sin\theta((1)/(sin\theta) -(cos^2\theta)/(sin\theta)) =20sin^2\theta\\ 20sin\theta((1-cos^2\theta)/(sin\theta)) =20sin^2\theta\\1-cos^2\theta = sin^2\theta\\ 20sin\theta((sin^2\theta)/(sin\theta)) =20sin^2\theta\\Cancelling\,\, sin\theta \,\,over \,\,sin\theta\\20sin^2\theta=20sin^2\theta

So, this is an identity.

So, option C Only second equation is an identity is correct.

User Allon Guralnek
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.