Answer:
x=-4 and x=2
Explanation:
You are given the function
![f(x)=(x^2+2x-8)/(x^2-2x-8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5hoct0lvqtymbe7vpwt4ysqdoehtq359sr.png)
The zeros of the function are those value of x, for which
![f(x)=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rur55zla9ujowurgyoxeoex2g38c6hzs1g.png)
First, find x for which function is undefined
![x^2-2x-8\\eq0\\ \\x^2-4x+2x-8\\eq 0\\ \\x(x-4)+2(x-4)\\eq 0\\ \\(x-4)(x+2)\\eq 0\\ \\x\\eq 4\text{ and }x\\eq -2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6bbziuu07pt7j0wqbxgsofwl5mtprn7jll.png)
Now find points at which f(x)=0:
![f(x)=0\Rightarrow x^2+2x-8=0\\ \\x^2+4x-2x-8=0\\ \\x(x+4)-2(x+4)=0\\ \\(x-2)(x+4)=0\\ \\x=2\text{ or }x=-4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gcprmm908zwtyw7ez6kgrrf7bod0sd8p0m.png)
For both these values (x=-4 and x=2) function f(x) is defined, then x=-4 and x=2 are zeros of the function.