Answer:
The answer in the attached figure
Explanation:
step 1
Find the area of one blue square
step 2
Find the area of one orange triangle
![A=(1/2)8^(2)=32\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/b4std1q80r9gndkyhl79zqms0h07fyrde0.png)
Part 1)
![256\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v8b2k47wvavkjt7cyav95kfgpulq7ub01v.png)
Divide the total area by the area of one orange triangle
![256/32=8\ triangles](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f2yzum8wytrzq7ndwc7jnhzk3klplrxhgq.png)
Part 2)
![180\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/s79ifcjxlscws0bcbka5x9oksilaieqewg.png)
Divide the total area by the area of one blue square
![180/36=5\squares](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jhgw8qpm185fw23ux6ywauvtd7tr1ww20r.png)
Part 3)
![168\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ryj86pemh2zuq3ep6xsoc5sk2amndm4wk8.png)
Let
x----> the number of blue squares
y ------> the number of orange triangles
we know that
![36x+32y=168](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7cf02fx2dpmeua0r2b7vhhijdpra2rmgt0.png)
Construct a table and prove different values for x and for y
we have
x=2, y=3
Two blue squares and three orange triangles
Area of blue squares
![A1=2*(36)=72\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/eg7sjzd9vgnom6y7mhupnommemdlcu24ag.png)
Area of an orange triangles
![A2=3*(32)=96\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tpn7vih0gzaygqea1w4k0lionwujk6rbsy.png)
so
the area total is
![72+96=168\ ft^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nl90fc7ouchilmxjkvmc9xnku33pu4l85z.png)