74.8k views
0 votes
Solve The Equation
3x-2y=12
-3x+8y=-6

User Fakhamatia
by
5.0k points

2 Answers

0 votes

Step 1: 3x in the first equation and -3x in the second equation cancel each other out, since summing them together give you zero (look at image below)

Step 2: Now you have the equations: -2y = 12 and 8y = -6. You can combine the two equations by adding -2y and 8y together and also 12 plus -6 (look at image below)

Step 3: Current formula is 6y = 6. To isolate y divide 6 to both sides and you will get y = 1

Step 4: Choose either equation and input 1 for y and solve for x

3x - 2(1) = 12

3x - 2 = 12

3x = 14

x = 14/3

(14/3, 1)

Below you can see the graph I checked it on, and the two lines indeed intersect at (14/3, 1) (aka - (4.667, 1)

Hope this helped!

Solve The Equation 3x-2y=12 -3x+8y=-6-example-1
Solve The Equation 3x-2y=12 -3x+8y=-6-example-2
Solve The Equation 3x-2y=12 -3x+8y=-6-example-3
User Kabi
by
4.8k points
5 votes

Answer:


\large\boxed{x=(14)/(3),\ y=1}

Explanation:


\underline{+\left\{\begin{array}{ccc}3x-2y=12\\-3x+8y=-6\end{array}\right}\qquad\text{add both sides of the equations}\\.\qquad\qquad6y=6\qquad\text{divide both sides by 6}\\.\qquad\qquad\boxed{y=1}\\\\\text{Put the value of y to the first equation:}\\3x-2(1)=12\\3x-2=12\qquad\text{add 2 to both sides}\\3x=14\qquad\text{divide both sides by 3}\\\boxed{x=(14)/(3)}

User Madea
by
4.8k points