Answer:
The value of the single logarithm is -11 ⇒ answer B
Explanation:
* Lets revise the rule of the logarithmic functions
# ㏒ a + ㏒ b = ㏒ ab
# ㏒ a - ㏒ b = ㏒ a/b
# ㏒ a^n = n ㏒ a
# ㏒ 1 = 0
* Now lets solve the problem
∵
![log_(b)((A^(5)C^(2))/(D^(6)))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pvi1ai6wogm42x5qqhokrmainl7ffmuqas.png)
- Change the single logarithm to an expression by change the
multiplication to addition and the division to subtraction
∵
![log_(b)A^(5)=5log_(b)A](https://img.qammunity.org/2020/formulas/mathematics/middle-school/86zmcmvzs62fd3kqdb72jetfl3qm528fqj.png)
∵
![log_(b)C^(2)=2log_(b)C](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3e6yo1m8m4fqp78t8gfyn5miaflovqygca.png)
∵
![log_(b)D^(6)=6log_(b)D](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dgfp7jbaoj8jan1kwfofe3qejsctq0vpij.png)
∴ The single logarithm =
![5log_(b)A+2log_(b)C-6log_(b)D](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gv3whwqgmssf72junsgjqdgsby1c72tfc4.png)
* Now lets substitute the values
∵
![log_(b)A=3;===log_(b)C=2;===log_(b)D=5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dqf8iv94vwlhr5ebycpn6h4nqa4mb8qlqy.png)
- Substitute the values into the expression
∴ The value = 5(3) + 2(2) - 6(5) = 15 + 4 - 30 = -11
* The value of the single logarithm is -11