Answer:
Explanation:
The length of EA is the difference between AD (6) and ED (5), so is ...
6 - 5 = 1
That is, the distance ED is 5 times the distance EA.
The two triangles are similar, so the distance BC will be 5 times the distance BA:
BC = 5·AB
BC = 5·2 = 10 . . . . . substitute for length AB
x +4 = 10 . . . . . . . . . substitute for length BC
x = 10 -4 = 6 . . . . . . subtract 4
We already know BC = 10. Of course AC = AB + BC = 2+10 = 12.
The lengths of interest are x=6, BC=10, AC=12.