Final answer:
The domain of the original function with the positive slope is restricted to x > 4, and the range of f(x) is y ≥ 6. Therefore, the domain of the inverse function is x ≥ 6.
Step-by-step explanation:
The function given is f(x) = |x – 4| + 6. When restricting the domain to the portion of the graph with a positive slope, the function increases. In the absolute value function, the slope changes at the vertex, which here is when x = 4. For x > 4, the slope is +1 because the graph of the function is increasing. So, considering the domain x > 4 makes the graph of the function only represent the portion with a positive slope.
The range of the original function with the restricted domain is f(x) ≥ 6, because the lowest value of |x – 4| is 0 when x ≥ 4, which results in f(x) = 0 + 6 = 6 when x = 4. Consequently, the corresponding range of the inverse function must be the domain of the original function, and thus, the domain of the inverse function must be x ≥ 6.