Answer:
5
Explanation:
We can use the distance formula with 3 different vertices to figure out the shortest of the three sides.
The distance formula is
![√((y_2-y_1)^2+(x_2-x_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/71xss6nge0ojdbdsvb0zfwdjagdpw5fuy1.png)
Where (x_1,y_1) is the first points and (x_2,y_2) is the second set of points, respectively.
Now let's figure out the length of 3 sides.
1. The length between (-6,-5) & (-5,6):
![√((y_2-y_1)^2+(x_2-x_1)^2) \\=√((6--5)^2+(-5--6)^2)\\ =√((6+5)^2+(-5+6)^2) \\=√(11^2+1^2) \\=√(122)](https://img.qammunity.org/2020/formulas/mathematics/college/t4p2z5dc2qbfi7ig3qj3t4swr6parrz41j.png)
2. The length between (-6,-5) & (-2,2):
![√((y_2-y_1)^2+(x_2-x_1)^2) \\=√((2--5)^2+(-2--6)^2) \\=√((2+5)^2+(-2+6)^2)\\ =√(7^2+4^2)\\ =√(65)](https://img.qammunity.org/2020/formulas/mathematics/college/gmw1y3pmjtg1ue220jdbfk48102h4yt7cc.png)
3. The length between (-5,6) & (-2,2):
![√((y_2-y_1)^2+(x_2-x_1)^2) \\=√((2-6)^2+(-2--5))^2}\\ =√((-4)^2+(3)^2) \\=√(25) \\=5](https://img.qammunity.org/2020/formulas/mathematics/college/xcq49pyxwib51yp8jxiza21d2it1xofz6q.png)
Thus, length of the shortest side is 5.