Answer:
LCM=(m+1)(m-5)(m+7)
Explanation:
Given expressions are
and
.
To find the LCM, first we need to find factors of both expressions.
![m^2-4m-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mb571iou3szqj8jkdpceudu1yowwgvamnd.png)
![=m^2+1m-5m-5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i4xno4kwt9tk2ms7puz928v7xbypywuchy.png)
![=m(m+1)-5(m+1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zzm0qoexsgaw9i90evebk4nxkt0qmnkygr.png)
![=(m+1)(m-5)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a3lv4lds9rp0kl6n0ygp3hprqh1t1zt0q2.png)
Similarly factor other expression
![m^2+8m+7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lur0sb9pwdkidtdf4dwz7wxc6a8bylf1qg.png)
![=(m+1)(m+7)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9df65uad9m1h989bameuac6rkd0i62l7c8.png)
Common factor in both is (m+1)
bring down remaining non-common factors.
So LCM=(m+1)(m-5)(m+7)