9.7k views
5 votes
Identify a and b in the binomial expression (2x3 + 3y2)7.​

User Benmmurphy
by
7.7k points

2 Answers

4 votes

Answer:


a=2x^3 and
b=3y^2

Explanation:

The given binomial expression is:
(2x^3+3y^2)^7

A standard binomial expression is like
(a+b)^n

Comparing the given expression with the standard binomial expression.....


(a\ \ +\ \ b)^n \Longleftrightarrow (2x^3\ +\ 3y^2)^7\\ \\ So,\ \ a=2x^3\\ \\ and\ \ b=3y^2

User Caylin
by
7.4k points
3 votes


\text{Hey there!}


\text{Distribute the value of 7 in each of your terms}


\text{(2x}^3+\text{3y}^2)(7)


\text{2x}^3*7=\text{14x}^3


\text{3y}^2*7=\text{21y}^2


\text{We cannot combine like terms because they AREN'T any in this equation}


\boxed{\boxed{\bf{Answer:14x^3+21y^2}}}\checkmark


\text{Good luck on your assignment and enjoy your day!}

~
\frak{LoveYourselfFirst:)}

User Brantley Blanchard
by
8.5k points