78.2k views
5 votes
Sphere A is similar to Sphere B. The scale factor of the lengths of the radii of Sphere A to Sphere B is 1 to 4. Sphere A has the radius of 6 units and a volume of 288pi cubic units. Find the volume of Sphere B.

1 Answer

3 votes


\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\\\ \begin{array}{ccccllll} &\stackrel{\stackrel{ratio}{of~the}}{Sides}&\stackrel{\stackrel{ratio}{of~the}}{Areas}&\stackrel{\stackrel{ratio}{of~the}}{Volumes}\\ \cline{2-4}&\\ \cfrac{\stackrel{similar}{shape}}{\stackrel{similar}{shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}~\hspace{6em} \cfrac{s}{s}=\cfrac{√(Area)}{√(Area)}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] \rule{34em}{0.25pt}


\bf \cfrac{\textit{sphere A}}{\textit{sphere B}}\qquad \stackrel{\stackrel{sides'}{ratio}}{\cfrac{1}{4}}\qquad \qquad \stackrel{\stackrel{sides'}{ratio}}{\cfrac{1}{4}}=\stackrel{\stackrel{volumes'}{ratio}}{\cfrac{\sqrt[3]{288}}{\sqrt[3]{v}}}\implies \cfrac{1}{4}=\sqrt[3]{\cfrac{288}{v}}\implies \left( \cfrac{1}{4} \right)^3=\cfrac{288}{v} \\\\\\ \cfrac{1^3}{4^3}=\cfrac{288}{v}\implies \cfrac{1}{64}=\cfrac{288}{v}\implies v=18432

User Lockdoc
by
4.6k points