Question 1
Let the scale factor be k.
Then, we have the mapping
![N(6,-3)\to N'(6k,-3k)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/andc6eon2x57gt24wj02rs1dkdgz7b9ace.png)
This implies that:
![(6k,-3k)=(2,-1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8pe87uj4ex268rdj4m0927wwlhw3laqk4g.png)
We equate any corresponding component find the value of the scale factor k.
6k=2
![k=(2)/(6)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sb45gy44c7d0yovbjzrvlggzamzi1cqnsf.png)
![k=(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/45nozbl7vzd0b5n6wkjea2gtrq43hpjex6.png)
Hence the scale factor is
![(1)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o08xg954t1gbzo9avralvfomcybk63rm02.png)
Question 2:
The midpoint of any two points can be calculated using the formula;
![((x_1+x_2)/(2), (y_1+y_2)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tds08hu379rp41b6fwy56tojpyd9wbu4py.png)
We want to find the midpoint of (-8, 5) and (2, -2).
![((-8+2)/(2), (5+-2)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6tnnlkrfhl9l5z2v1g529xkrbe8kujy98o.png)
![((-6)/(2), (3)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/usskiuvn4cekl9dlm6caw7hropz6aox4p9.png)
The midpoint is:
![(-3, (3)/(2))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vttvqlu9nk7g257s509n7vu7wocl50zb3l.png)