93.4k views
2 votes
Find the exact value

Find the exact value-example-1
User Ecortazar
by
7.9k points

1 Answer

2 votes

Answer:

The exact value of 2 sin(120°) cos(120°) is -√3/2

Explanation:

* Lets revise the trigonometry functions of the double angle

# sin(2x) = 2 sin(x) cos(x)

# cos(2x) = cos²(x) - sin²(x) OR

cos(2x) = 2 cos²(x) - 1 OR

cos(2x) = 1 - 2 sin²(x)

# tan(2x) = 2 tan(x)/(1 - tan²(x))

* Now lets solve the problem

∵ 2 sin(120°) cos(120°)

- Put sin(120°) = sin(2×60°)

∵ sin(2x) = 2 sin(x) cos(x)

∴ sin(120°) = 2 sin(60°) cos(60°)

∵ sin(60°) = √3/2 and cos(60°) = 1/2

∴ sin(120°) = 2 (√3/2) (1/2) = √3/2

sin(120°) = √3/2 ⇒ (1)

- Put cos(120°) = cos(2×60°)

∵ cos(2x) = cos²(x) - sin²(x)

∴ cos(120°) = cos²(60°) - sin²(60°)

∵ cos(60°) = 1/2 and sin(60°) = √3/2

∴ cos(120°) = (1/2)² - (√3/2)² = 1/4 - 3/4 = -2/4 = -1/2

∴ cos(120°) = -1/2 ⇒ (2)

- Substitute (1) and (2) in the expression 2 sin(120) cos(120)

∴ 2 sin(120°) cos(120°) = 2 (√3/2) (-1/2) = -√3/2

* The exact value of 2 sin(120°) cos(120°) is -√3/2

User Dbl
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories