200k views
5 votes
Complete the identity

Complete the identity-example-1

1 Answer

7 votes

Answer:

sin⁡(α+β)/sin⁡(α-β) ==(tan⁡ α+tan ⁡β)/(tan ⁡α-tan ⁡β )

Explanation:

We have to complete

sin⁡(α+β)/sin⁡(α-β) = ?

The identities that will be used:

sin⁡(α+β)=sin⁡ α cos ⁡β+cos ⁡α sin ⁡β

and

sin⁡(α-β)=sin⁡ α cos⁡ β-cos⁡ α sin⁡ β

Now:

= sin⁡(α+β)/sin⁡(α-β)

=(sin⁡ α cos⁡ β+cos ⁡α sin⁡ β)/(sin ⁡α cos ⁡β-cos ⁡α sin ⁡β)

In order to bring the equation in compact form we wil divide both numerator and denominator with cos⁡ α cos⁡ β

= (((sin ⁡α cos ⁡β+cos ⁡α sin ⁡β))/(cos ⁡α cos ⁡β ))/(((sin α cos ⁡β-cos ⁡α sin ⁡β))/(cos ⁡α cos ⁡β))

=((sin⁡ α cos⁡β)/(cos ⁡α cos ⁡β )+(cos ⁡α sin ⁡β)/(cos ⁡α cos ⁡β ))/((sin ⁡α cos ⁡β)/(cos ⁡α cos ⁡β )-(cos ⁡α sin ⁡β)/(cos ⁡α cos ⁡β))

=(sin⁡ α/cos ⁡α + sin ⁡β/cos ⁡β )/(sin ⁡α/cos ⁡β - sin ⁡β/cos ⁡β)

=(tan ⁡α+tan ⁡β)/(tan ⁡α-tan ⁡β )

So,

sin⁡(α+β)/sin⁡(α-β) ==(tan⁡ α+tan ⁡β)/(tan ⁡α-tan ⁡β)

User Niv Cohen
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories