Answer:
1. y=0.35x+35
2. If 979 minutes are used, the total cost will be $377.65 dollars.
Explanation:
1. Let $x be the flat monthly fee and $y be the amount of money paid per minute used on the phone.
If a customer uses 210 minutes, the monthly cost will be $108.5, thus
![x+210y=108.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vcy5ao7c7n6osswwy69h4kobwaoaxvkdq2.png)
If the customer uses 620 minutes, the monthly cost will be $252, then
![x+620y=252](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lu0vkoak660kee9w2c9x96c27fnqnkd9cn.png)
Subtract from the second equation the first one:
![x+620y-(x+210y)=252-108.5\\ \\x+620y-x-210y=143.5\\ \\410y=143.5\\ \\y=0.35](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dljtbws2ka3ogc6cbfsuwa8ajgrijfuwlv.png)
Substitute it into the first equation
![x+210\cdot 0.35=108.5\\ \\x=108.5-73.5\\ \\x=35](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nbucykjw6jxti5ud3peen6kzxgl9tzdo9o.png)
We get the flat fee is $35 and the amount of money per minure used is $0.35. So, the equation of the function is
![y=35+0.35x,](https://img.qammunity.org/2020/formulas/mathematics/middle-school/la1nwt23ku3bnzitvdvynoivijzej1c8du.png)
where x is the number of monthly minutes used and y is the total monthly of the NextFell plan.
2. When x=979, then
![y=35+0.35\cdot 979=377.65](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xp8xhqy5trzea8iwu7le3mxf4qapu18u5s.png)