119k views
12 votes
Given that f(x) = x2 + 10x + 21 and g(x) = x + 3, find f(x) · g(x) and express the result in standard form.

1 Answer

6 votes

Answer:

We conclude that:


f\left(x\right)\cdot g\left(x\right)=x^3+13x^2+51x+63

Explanation:

Given


f\left(x\right)=\left(\:x^2\:+\:10x\:+\:21\right)


g(x)=x+3

Determining f(x) · g(x)


f\left(x\right)\cdot g\left(x\right)=\left(\:x^2\:+\:10x\:+\:21\right)* \left(x+3\right)

Distribute parentheses


=x^2x+x^2* \:3+10xx+10x* \:3+21x+21* \:3


=x^2x+3x^2+10xx+10* \:3x+21x+21* \:3


=x^3+3x^2+10x^2+30x+21x+63

Add similar elements:
3x^2+10x^2=13x^2


=x^3+13x^2+30x+21x+63

Add similar elements:
30x+21x=51x


=x^3+13x^2+51x+63

Therefore, we conclude that:


f\left(x\right)\cdot g\left(x\right)=x^3+13x^2+51x+63

User Eli Hooten
by
4.8k points