118k views
1 vote
Given the volume of Figure A is 512cm ^3and Figure B is 343cm^3, find the ratio of the perimeter from Figure A to Figure B.

User Alvinsj
by
6.4k points

1 Answer

3 votes


\bf ~\hspace{5em} \textit{ratio relations of two similar shapes} \\[2em] \begin{array}{ccccllll} &\stackrel{ratio~of~the}{Sides}&\stackrel{ratio~of~the}{Areas}&\stackrel{ratio~of~the}{Volumes}\\ \cline{2-4}&\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array}\\\\[-0.35em] ~\dotfill


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(Area)}{√(Area)}=\cfrac{\sqrt[3]{Volume}}{\sqrt[3]{Volume}} \\\\[-0.35em] \rule{34em}{0.25pt}


\bf \cfrac{\textit{figure A}}{\textit{figure B}}\qquad \qquad \cfrac{s}{s}=\cfrac{\sqrt[3]{512}}{\sqrt[3]{343}}\qquad \begin{cases} 512=&2^9\\ &2^(3\cdot 3)\\ &(2^3)^3\\ 343=&7^3 \end{cases}\implies \cfrac{s}{s}=\cfrac{\sqrt[3]{(2^3)^3}}{\sqrt[3]{7^3}} \\\\\\ \cfrac{s}{s}=\cfrac{2^3}{7}\implies \cfrac{s}{s}=\cfrac{8}{7}\implies s:s = 8:7\impliedby \textit{ratio of the }\stackrel{sides~and}{perimeters}

User Wewals
by
7.0k points