92.0k views
3 votes
Please help with math problem

Please help with math problem-example-1
User Meetri
by
5.2k points

1 Answer

6 votes

Answer:

The general equation is 4x² + 4y² - 8 x + 19 y - 140 = 0

Explanation:

* Lets revise the general form of the equation of the circle

- The general form : x² + y² + Dx + Ey + F = 0, where D, E, F are constants

- To find the values of D, E , F we must make three equations contains

D, E , F and solve them simultaneous

- We can do that if we have three points on the circle to substitute

x and y in the equation by them

* Now lets solve the problem

- There are three point on the circle (-5 , 0) , (0 , 4) , (2 , 4)

∵ The equation of the circle is x² + y² + Dx + Ey + F = 0

- Lets use the first point

∵ point (-5 , 0) lies on the circle

∴ (-5)² + (0)² + D(-5) + E(0) + F = 0 ⇒ simplify

∴ 25 - 5D + F = 0 ⇒ isolate F

F = 5D - 25 ⇒ (1)

- Lets use the second point

∵ point (0 , 4) lies on the circle

∴ (0)² + (4)² + D(0) + E(4) + F = 0 ⇒ simplify

∴ 16 + 4E + F = 0 ⇒ substitute F form (1)

∴ 16 + 4E + 5D - 25 = 0

∴ 5D + 4E - 9 = 0 ⇒ add 9 to both sides

5D + 4E = 9 ⇒ (2)

- Lets use the third point

∵ point (2 , 4) lies on the circle

∴ (2)² + (4)² + D(2) + E(4) + F = 0 ⇒ simplify

∴ 4 + 16 + 2D + 4E + F = 0 ⇒ simplify

∴ 20 + 2D + 4E + F = 0 ⇒ substitute F form (1)

∴ 20 + 2D + 4E + 5D - 25 = 0 ⇒ simplify

∴ 7D + 4E - 5 = 0 ⇒ add 5 to both sides

7D + 4E = 5 ⇒ (3)

- Subtract (3) from (2) to eliminate E

∴ -2D = 4 ⇒ ÷ -2

D = -2

- Substitute the value of D in (3) to find E

∴ 7(-2) + 4E = 5

∴ -14 + 4E = 5 ⇒ add 14 from both sides

∴ 4E = 19 ⇒ ÷ 4

E = 19/4

- Substitute the value of D in (1) to find F

∴ F = 5(-2) - 25

∴ F = -10 - 25 = -35

F = -35

* lets write the equation of the circle

∴ x² + y² - 2x + 19/4 y - 35 = 0 ⇒ × 4

4x² + 4y² - 8 x + 19 y - 140 = 0

* The general equation is 4x² + 4y² - 8 x + 19 y - 140 = 0

User Jaykishan
by
5.0k points