1.
![7.95\cdot 10^6 J](https://img.qammunity.org/2020/formulas/physics/college/2322tg5sfli4m0t709sp7iqpf4vqpd0foq.png)
The total energy given to the cells during one pulse is given by:
![E=Pt](https://img.qammunity.org/2020/formulas/physics/high-school/j5vnpc5avoair04lmif0fe9zbq8pft00dl.png)
where
P is the average power of the pulse
t is the duration of the pulse
In this problem,
![P=1.59\cdot 10^(12)W](https://img.qammunity.org/2020/formulas/physics/college/cocrcpgql9sfya3qv9tvza7ja3b5k5eim0.png)
![t=5.0 ns = 5.0\cdot 10^(-9) s](https://img.qammunity.org/2020/formulas/physics/college/ocn4gzzwg1l0fw7fn5bvr5463ftba6j9es.png)
Substituting,
![E=(1.59\cdot 10^(12)W)(5.0 \cdot 10^(-6)s)=7.95\cdot 10^6 J](https://img.qammunity.org/2020/formulas/physics/college/moynb05m4w05pe1ajcps74yrz5w8eb133u.png)
2.
![1.26\cdot 10^(21)W/m^2](https://img.qammunity.org/2020/formulas/physics/college/kcrhl1dzabumjvyt7jjlq80t7qbeppcuf1.png)
The energy found at point (1) is the energy delivered to 100 cells. The radius of each cell is
![r=(4.0\mu m)/(2)=2.0 \mu m = 2.0\cdot 10^(-6)m](https://img.qammunity.org/2020/formulas/physics/college/te22eo85wukuh6qpn4btwx1h7hfpfs5ubj.png)
So the area of each cell is
![A=\pi r^2 = \pi (2.0 \cdot 10^(-6)m)^2=1.26\cdot 10^(-11) m^2](https://img.qammunity.org/2020/formulas/physics/college/pi6ik2wu3rn9fu8nuo9h94qptktqmadz4b.png)
The energy is spread over 100 cells, so the total area of the cells is
![A=100 (1.26\cdot 10^(-11) m^2)=1.26\cdot 10^(-9) m^2](https://img.qammunity.org/2020/formulas/physics/college/sfz9tnungsrtayownvmwle8enke4iix0hr.png)
And so the intensity delivered is
![I=(P)/(A)=(1.59\cdot 10^(12)W)/(1.26\cdot 10^(-9) m^2)=1.26\cdot 10^(21)W/m^2](https://img.qammunity.org/2020/formulas/physics/college/xoec03menpbcdlmvxz7xnpk5e8hi30j9y5.png)
3.
![9.74\cdot 10^(11) V/m](https://img.qammunity.org/2020/formulas/physics/college/76i3bljwysowpmw9pxulw41wg3n89xe4mi.png)
The average intensity of an electromagnetic wave is related to the maximum value of the electric field by
![I=(1)/(2)c\epsilon_0 E^2](https://img.qammunity.org/2020/formulas/physics/high-school/7c5eeuv3y3exlzrazu4bpzsnlq6fpq523o.png)
where
c is the speed of light
is the vacuum permittivity
E is the amplitude of the electric field
Solving the formula for E, we find:
![E=\sqrt{(2I)/(c\epsilon_0)}=\sqrt{(2(1.26\cdot 10^(21) W/m^2))/((3\cdot 10^8 m/s)(8.85\cdot 10^(-12)F/m))}=9.74\cdot 10^(11) V/m](https://img.qammunity.org/2020/formulas/physics/college/qwutp6gys6rf29gtwynz2v4h5m5v4jeek0.png)
4. 3247 T
The magnetic field amplitude is related to the electric field amplitude by
![E=cB](https://img.qammunity.org/2020/formulas/physics/high-school/g0uh4e8blm7qsgy9g8o919uolkqty2uhd7.png)
where
E is the electric field amplitude
c is the speed of light
B is the magnetic field
Solving the equation for B and substituting the value of E that we found at point 3, we find
![B=(E)/(c)=(9.74\cdot 10^(11) V/m)/(3\cdot 10^8 m/s)=3247 T](https://img.qammunity.org/2020/formulas/physics/college/omzy91vhliyyqfz0thmc9w01kllckaxyre.png)