Answer:
Final answer is
.
Explanation:
Given expression is
.
Now we need to find the fourth term of the given expression
. So apply the nth term formula using binomial expansion.
exponent n=8
4th term means we use r=4-1=3
x=2,
![y=-√(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7n0nbkotrjy8tg0rz0mixionpbgu4s922w.png)
rth term in expansion of
is given by formula:
![(n!)/(\left(n-r\right)!\cdot r!)x^(\left(n-r\right))\cdot y^r](https://img.qammunity.org/2020/formulas/mathematics/high-school/229qv7n1pw6h43z6q1j2eq6pidwtumxo75.png)
![=(8!)/(\left(8-3\right)!\cdot3!)\cdot a^(\left(8-3\right))\cdot\left(-√(2)\right)^3](https://img.qammunity.org/2020/formulas/mathematics/high-school/xo50guafkssszqdhcquau1o3t2zr6uw73q.png)
![=(8!)/(5!\cdot3!)\cdot a^5\cdot\left(-2√(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c436x31owsjfsrbq9dsonjnjauzxm5qj1r.png)
![=(40320)/(120\cdot6)\cdot a^5\cdot\left(-2√(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/1p1ss00bb7b6oystj9gwhk5ntd4arwjdba.png)
![=56\cdot a^5\cdot\left(-2√(2)\right)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rf9cb6rfgd0lqj17x5hzdjr370jtf5cm5l.png)
![=-112a^5\cdot√(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/wfxqa34gk19ijym11fhh1e6y7j5aucsqhp.png)
![=-112\cdot√(2)a^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/i39garqtjutyx6l8dzh8godh78x506q53o.png)
Hence final answer is
.