Answer:
![\large\boxed{x=(-1-\sqrt3)/(2)\ or\ x=(-1+\sqrt3)/(2)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aj8x0kjzrs0jktod5sahai0g3ku2flojzr.png)
Explanation:
The quadratic formula of a quadratic equation:
![ax^2+bx+c=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/pfx3qmuu3wy6dr87fm204dpq1jdcjpuwdz.png)
Discriminant of a Quadratic is
![\Delta=b^2-4ac](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mbhfsl84bpi016johjflbv2yw7oydzrp2f.png)
If Δ < 0, then an equation has no real solution (has two complex solutions)
If Δ = 0, then an equation has one real solution
![x=(-b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7hfciynjax9o3izk15rxm66xmqml2n89og.png)
If Δ >0, then an equation has two real solutions
![x=(-b\pm√(\Delta))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/48ycncmkcuw308f15xko2l5ghoasifbw54.png)
==========================================
We have the equation:
![2x^2+2x-1=0\\\\a=2,\ b=2,\ c=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fhhklu94f542rekfm5bnk1l8la5p45kqv9.png)
Substitute:
![\Delta=2^2-4(2)(-1)=4+8=12>0\\\\\sqrt\Delta=√(12)=√(4\cdot3)=\sqrt4\cdot\sqrt3=2\sqrt3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ejlqjhcu4s3pqwtl9avrtlbqis27l4jm6.png)
simplify by 2
![x=(-1\pm\sqrt3)/(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/u0h20tw7z2jgsod1equolb5gw05diok5v7.png)