Answer:
Part 1) The larger integer is 11
Part 2) The denominator is 5
Part 3) The positive integer is 4
The graph in the attached figure
Explanation:
Part 1)
Let
x----> the smaller positive integer
y-----> the larger positive integer
we know that
-----> equation A
-----> equation B
substitute equation B in equation A and solve for y
![(y-3)^(2) +y^(2) =185\\ \\y^(2) -6y+9+y^(2)=185\\ \\2y^(2)-6y-176=0](https://img.qammunity.org/2020/formulas/mathematics/college/e98xhp5j8046vjauh3cle6kh9njqr7nec6.png)
using a graphing calculator-----> solve the quadratic equation
The solution is y=11
![x=11-3=8](https://img.qammunity.org/2020/formulas/mathematics/college/nex4opxl6ihaxaflt2otinslycxuf0safp.png)
Part 2)
Let
x----> the numerator of the fraction
y-----> the denominator of the fraction
we know that
----> equation A
----> equation B
substitute equation A in equation B and solve for y
![(2y+5)/(y+4)=(5)/(3)\\ \\6y+15=5y+20\\ \\6y-5y=20-15\\ \\y=5](https://img.qammunity.org/2020/formulas/mathematics/college/282v7zn1nzwuykj4ei2e7xms9en040r3cj.png)
![x=2(5)+1=11](https://img.qammunity.org/2020/formulas/mathematics/college/djlvmzdcql998fq6p49kbk4c6fqid5mama.png)
Part 3)
Let
x----> the positive integer
we know that
![x-(1)/(x)=(15)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/x0sfn1xufxyf8t1xkbudhlopqu4bt5jmyz.png)
solve for x
![x-(1)/(x)=(15)/(4)\\ \\4x^(2)-4=15x\\ \\4x^(2)-15x-4=0](https://img.qammunity.org/2020/formulas/mathematics/college/mj4txpesxlut1zw1vexeplo81zniyq1ei2.png)
using a graphing calculator-----> solve the quadratic equation
The solution is x=4