53.3k views
1 vote
(80 points)
Please help! Show all of your work for your answers as well.

(80 points) Please help! Show all of your work for your answers as well.-example-1
(80 points) Please help! Show all of your work for your answers as well.-example-1
(80 points) Please help! Show all of your work for your answers as well.-example-2
(80 points) Please help! Show all of your work for your answers as well.-example-3
User Aensm
by
8.5k points

1 Answer

4 votes

Answer:


\large\boxed{Q1.\ A=(5)/(6)x^2}\\\boxed{Q2.\ 250m^(12)n^(-3)=(250m^(12))/(n^3)}\\\boxed{Q3.\ (81x^(16)y^(36))/(16z^(28))}\\\boxed{Q5.\ y^(1)/(2)=√(y)}

Explanation:


Q1.\\\\\text{The formula of an area of a triangle:}\\\\A_\triangle=(bh)/(2)\\\\b-\ \text{base}\\h-\text{height}\\\\\text{We have}\ b=(5)/(3)x,\ h=x.\ \text{Substitute:}\\\\A_\triangle=(\left((5)/(3)x\right)(x))/(2)=(5x^2)/((3)(2))=(5)/(6)x^2


Q2.\\\\2(5m^4n^(-1))^3\qquad\text{use}\ (ab)^n=a^nb^n\\\\=2(5^3)(m^4)^3(n^(-1))^3\qquad\text{use}\ (a^n)^m=a^(nm)\\\\=(2)(125)(m^(4\cdot3))(n^(-1\cdot3))\\\\=250m^(12)n^(-3)\qquad\text{use}\ a^(-n)=(1)/(a^n)\\\\=(250m^(12))/(n^3)


Q3.\\\\\left(-(3x^4y^9)/(2z^7)\right)^4\qquad\text{use}\ \left((a)/(b)\right)^n=(a^n)/(b^n)\ \text{and}\ (ab)^n=a^nb^n\\\\=(3^4(x^4)^4(y^9)^4)/(2^4(z^7)^4)\qquad\text{use}\ (a^n)^m=a^(nm)\\\\=(81x^(4\cdot4)y^(9\cdot4))/(16z^(7\cdot4))=(81x^(16)y^(36))/(16z^(28))


Q4.\\\\\left(x^0y^{(1)/(3)\right)^(3)/(2)\cdot x^0\qquad\text{use}\ a^0=1\ \text{for any value of}\ a\ \text{except}\ 0\\\\=\left(1\cdot y^(1)/(3)\right)^(3)/(2)\cdot1\qquad\text{use}\ (a^n)^m=a^(nm)\\\\=y^{\left((1)/(3)\right)\left((3)/(2)\right)}\qquad\text{cancel 3}\\\\=y^(1)/(2)\qquad\text{use}\ \sqrt[n]{a}=a^(1)/(n)\\\\=√(y)

User Vishal Kardode
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories