Answer:
120 square units
Explanation:
In triangle PSQ, PS=SQ. Let PS=SQ=x units.
Since SQ-PQ=1, PQ=SQ-1=x-1 units.
The perimeter of the triangle PSQ is 50 units, so
PS+SQ+PQ=50 units.
Substitute PS=SQ=x un. and PQ=x-1 un.
x+x+x-1=50
3x=51
x=17
Hence
PS=SQ=17 units,
PQ=16 units.
Use Heron's formula to find the area:
![A=√(p(p-a)(p-b)(p-c)),](https://img.qammunity.org/2020/formulas/mathematics/high-school/wfzsjp70loi10axtvfpt4829lnylzbv2fs.png)
where p is semi-perimeter and a,b,c are lengths of sides.
![p=(17+17+16)/(2)=25,\\ \\\\A=√(25(25-17)(25-17)(25-16))=√(25\cdot 8\cdot 8\cdot 9)=5\cdot 8\cdot 3=120\ un^2.](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mxeyaeij4n3jg391tskvmx68xy7zc64jgv.png)