Answer:
Explanation:
23A: Simplify
V^2 + 11V + 10
There are no like terms
Answer when simplify: V^2 + 11V + 10
23B. Factor:
Steps: V^2 + 11V + 10
Break the expression into groups:
(V^2 + V) + (10V + 10)
Factor out: V From V^2 + V: V(V + 1)
Factor out: 10 From 10V + 10: 10(V + 1)
V(V + 1) + 10(V + 1)
Factor out common term: V + 1
Factor: Therefore your Answer: (V + 1) (V + 10)
24: Factor
Steps: k^2 + 11k + 30
Break the expression into groups:
(K^2 + 5K)(6K + 30)
Factor out: k from K^2 + 5K ====> K(K + 5)
Factor out 6 from 6K + 30 ===> 6(K + 5)
= k(k + 5) + 6(k + 5)
Factor out common term: k + 5
Factor: Therefore your Answer is: (K + 5) (K + 6)
25: Factor
Steps: R^2 - 1
Rewrite: 1 as 1^2
R^2 - 1^2
Apply difference of two square formulas:
x^2 - y^2 = (x + y)(x - y)
r^2 - 1^2 = (r + 1)(r - 1)
Therefore your answer: (r + 1)(r - 1)
26: Factor
Steps: V^2 - V - 2
Break the expressions into groups:
(V^2 + V) + ( -2V - 2)
Factor out V from V^2 + V: V(V + 1)
Factor out -2 from -2v - 2: -2(V + 1)
V(V + 1) - 2(V + 1)
Factor out common term: V + 1
Therefore your answer: (V + 1)(V - 2)
27: Factor
Steps: 4N^2 - 15N - 25
Break expression into groups:
(4N^2 + 5N) + ( -20N - 25)
Factor out N from 4N^2 + 5N: 4(4N + 5)
Factor out -5 from -20N - 25: -5(4N + 5)
N(4N + 5) - 5(4N + 5)
Factor out common term: 4N + 5
Therefore your answer: (4n + 5)(N - 5)
28: Factor:
Steps: N^2 + 3N - 54
Break the expression into group:
(N^2 - 6N) + (9N - 54)
Factor out N from N^2 - 6N: N(N - 6)
Factor out 9 From 9N - 54: 9(N - 6)
N(N - 6) + 9(N - 6)
Factor out common term: N - 6
Therefore your answer: (N - 6)(N + 9)
Hope that helps, Have an awesome day! :)