169k views
3 votes
If a 25.0 ml sample of sulfuric acid is titrated with 50.0 ml of 0.200 M potassium hydroxide to a phenolphthalein endpoint, what is the molarity of the acid?

A) 0.150 M
B) 0.100 M
C) 0.200 M
D) 0.300 M
E) 0.400 M

1 Answer

5 votes

Answer:

Molarity of the sulfuric acid is Choice C): 0.200 M.

Step-by-step explanation:

The unit for molarity "M" stands for moles per liter. Convert all volume to liters:


  • V({\rm NaOH}) = \rm 50.0\;ml = 50.0* 10^(-3)\;L = 5.00* 10^(-2)\;L;

  • V({\rm H_2SO_4}) = \rm 25.0\;ml = 25.0* 10^(-3)\;L = 2.50* 10^(-2)\;L.

How many moles of potassium hydroxide is required to reach the equivalence endpoint?


n({\rm NaOH}) = c \cdot V = 0.200\;\text{mol}\cdot\text{L}^(-1) * 5.00times 10^(-2) \;\text{L} = 1.00* 10^(-2)\;\text{mol}.

How many moles of sulfuric acid in the original solution?


\rm KOH neutralizes
\rm H_2SO_4 at a two-to-one ratio:


\rm 2\;KOH\;(aq) +H_2SO_4\;(aq) \to K_2SO_4\;(aq) + H_2O\;(l).

The
1.00* 10^(-2)\;\text{mol} moles of
\rm KOH will neutralize only half as much
\rm H_2SO_4. That is:


\displaystyle n({\rm H_2SO_4}) = \rm (1)/(2)* (1.00* 10^(-2)\;mol)= 5.00* 10^(-3)\;mol.

What's the molarity of the
\rm H_2SO_4 solution?


\displaystyle \begin{aligned}M({\rm H_2SO_4}) &= \frac{n(\rm H_2SO_4)}{V({\rm H_2SO_4})}=\rm (5.00* 10^(-3)\;mol)/(2.50* 10^(-2)\;L) = 0.200\;mol\cdot\L^(-1) = 0.200\;M\end{aligned}.

User Donastien
by
5.4k points