Answer:
1.
![\boxed{y=x^2+16\to138sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/uisdomuw4eks9irjhsfazpjy7m2b3u17kp.png)
2.
![\boxed{y=-x^2+7x\to42sq. \:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/hh5q9igygtchjehpsg5k5lp3c3vvs4ue9n.png)
3.
![\boxed{y=4x+26\to 204sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5ykft911y40pnnsxejn07e2t8afqbecmb.png)
4.
![\boxed{y=-0.5x+13\to72sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/k0z0gk6id2ee520rcjt67g368z9wa8teaq.png)
Explanation:
1. The first curve is
![y=x^2+16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/97ca3nq9rx6zao0pksnv4xbwpi004l8hoo.png)
The area under this curve on the interval [-1, 5] is given by:
![\int\limits^5_(-1) {x^2+16} \, dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/5t6czpbobacvj14yhxbii23sagbzcuvme3.png)
We integrate to obtain:
![(1)/(3)x^3+16x|_(-1)^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/qxicvocj0a3uzjlqrqm67v2t17w7r7nw76.png)
We evaluate to obtain:
![(1)/(3)(5)^3+16(5)-((1)/(3)(-1)^3+16(-1))=138sq.\:units](https://img.qammunity.org/2020/formulas/mathematics/high-school/5bnjlb3k75bjngb8qpi8r7fmwnz23ocq6h.png)
![\boxed{y=x^2+16\to138sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/uisdomuw4eks9irjhsfazpjy7m2b3u17kp.png)
2. The second curve is
.
The area under this curve on the interval [-1, 5] is given by:
![\int\limits^5_(-1) {-x^2+7x} \, dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/shapbt732l3wpfr42csx3vhbtmi6dinmoo.png)
We integrate this function to obtain:
![-(1)/(3)x^3+(7)/(2)x^2|_(-1)^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/qb6lelbnn1gcizv0phbtapjqi663v98j4m.png)
This evaluates to
square units.
![\boxed{y=-x^2+7x\to42sq. \:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/hh5q9igygtchjehpsg5k5lp3c3vvs4ue9n.png)
3. The third curve is
![y=4x+26](https://img.qammunity.org/2020/formulas/mathematics/high-school/rjba6swt3s7bzhksq7ojtp261ngevzh088.png)
The area under this curve on the interval [-1, 5] is given by:
![\int\limits^5_(-1) {4x+26} \, dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/ofu6xckbm2ne0d3zl1kdorwb6ms0301nk6.png)
We integrate this function to obtain:
![2x^2+26x|_(-1)^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/728r7dn2cjrc1z2s1216tbh4vejo0gqpkm.png)
We evaluate the limits of integration to obtain:
![2(5)^2+26(5)-(2(5)^2+26(5))=204sq.\:units](https://img.qammunity.org/2020/formulas/mathematics/high-school/mno7ixv9kgh24lr3k96xrjvlre503s8utq.png)
![\boxed{y=4x+26\to 204sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/d5ykft911y40pnnsxejn07e2t8afqbecmb.png)
4. The fourth curve is
![y=-0.5x+13](https://img.qammunity.org/2020/formulas/mathematics/high-school/m5ywlljpm789iu3o32watgv74bi1e4qr92.png)
The area under this curve on the interval [-1, 5] is given by:
![\int\limits^5_(-1) {-0,5x+13} \, dx](https://img.qammunity.org/2020/formulas/mathematics/high-school/btffx3oeww2uxyk4rj3q9lv3ko9jlqf389.png)
We integrate this function to obtain:
![-0.25x^2+13x|_(-1)^5](https://img.qammunity.org/2020/formulas/mathematics/high-school/r3fzeiqu5jr5w65cy90i31phugslc0otrh.png)
We evaluate the limits of integration to obtain:
![-0.25(5)^2+13(5)-(-0.25(-15)^2+13(-1))=72sq.\:units](https://img.qammunity.org/2020/formulas/mathematics/high-school/xd0950ckg29g17219mvt30zbappi0fubl6.png)
![\boxed{y=-0.5x+13\to72sq.\:units}](https://img.qammunity.org/2020/formulas/mathematics/high-school/k0z0gk6id2ee520rcjt67g368z9wa8teaq.png)