Answer:
The area of the sector is
![37.68\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fc4oez4rrwevc4n7pwe5dcku4qd1lvik34.png)
Explanation:
step 1
Find the area of the circle
The area of the circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
----> the radius is half the diameter
substitute
![A=(3.14)(6)^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2ff7ji1j6y8vuuyioc3xfd65zcme7v6h8u.png)
![A=113.04\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rgw6lofywj3aioakvni3k0oi1hxb261cns.png)
step 2
Find the area of a sector with a central angle of (2pi/3)
Remember that
The area of
subtends a central angle of
![2\pi \ radians](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nlnssam6olk39dqk97yufrccxoozv9p0l5.png)
so
by proportion
Let
x----> the area of the sector
![(2\pi)/(113.04)=((2\pi/3))/(x)\\ \\x=113.04*(2\pi/3)/(2\pi)\\ \\x=37.68\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jn1ryjtowjvdszgnuur41ss7oez9x89jic.png)