Answer:
Explanation:
Given that:
and
![d = 10t - 8](https://img.qammunity.org/2022/formulas/mathematics/college/bd3jnotsulmfww9ycrruv134nyudcuqjbi.png)
If we equate both since they are distances, we have:
Algebraically, moving the equation to the right side, we get:
![2t^ 2 = 10t -8 \\ \\ 2t^2 -10t +8 =0](https://img.qammunity.org/2022/formulas/mathematics/college/5ejooce8xa8lng0uu5yolsx57mil0vx182.png)
To factor the equation on the left side:
![2t^2 - 10t + 8 = 0](https://img.qammunity.org/2022/formulas/mathematics/college/kmmiu2ya1ftzft2uq2o2vry2jo94pqrysv.png)
Factor out 2 on the left-hand side:
![2 (t^2 -5t + 4) =0](https://img.qammunity.org/2022/formulas/mathematics/college/vbixvymfj4kkbqejd37y8vl4luvbo4prv8.png)
![=2 (t^2 -t-4t + 4)](https://img.qammunity.org/2022/formulas/mathematics/college/exwwweqrn6nwigid4k1p0ah1eahbetd9n6.png)
![= 2[t(t-1)-4(t-1)]](https://img.qammunity.org/2022/formulas/mathematics/college/d4qw7603kd46035fff4hri4o8bdwe3kopy.png)
![=2(t-1) (t-4)](https://img.qammunity.org/2022/formulas/mathematics/college/uafksc73le3xzfoemn8hc3jpk4c3qmd03o.png)
To determine the time when the two boats have to cover an equal distance:
![2(t -1)(t-4) =0 \\ \\(t-1)(t-4) =0](https://img.qammunity.org/2022/formulas/mathematics/college/vg8l8ty8rckf2bbie7bho1dsy8v6w52xtc.png)
Thus:
![t - 1 = 0 \ or \ t - 4 = 0 \\ \\ t = 1 \ or \ t = 4](https://img.qammunity.org/2022/formulas/mathematics/college/bvubkrgdybucnkqztjgmmma4zfz7fo0zjs.png)