77.2k views
4 votes
Help solve please !

Help solve please !-example-1
User Dibi
by
8.5k points

1 Answer

5 votes

Answer:


\log_2(((x^3)/(3))/(x+4))

Explanation:

The given logarithmic expression;


3\log_2x-(\log_23-\log_2(x+4))

Expand the parenthesis:


3\log_2x-\log_23+\log_2(x+4)

Use the product rule on the last two terms;


\log_aM+\log_aN=\log_aMN


3\log_2x-\log_23(x+4)


3\log_2x-\log_23(x+4)

Apply the power rule:


\log_2x^3-\log_23(x+4))

We now apply the quotient rule of logarithms:


\log_aM+\log_aN=\log_a((M)/(N))


\log_2x^3-\log_23(x+4)=\log_2((x^3)/(3(x+4)))

Or


\log_2x^3-\log_23(x+4)=\log_2(((x^3)/(3))/(x+4))