42.7k views
1 vote
What are some safety precautions that must be taken in order for nuclear reactions to occur? Give at least 5 precautions

User Bendystraw
by
5.1k points

1 Answer

3 votes

Answer:

1. Control of Radioactivity

This requires being able to control the neutron flux. Recall that in a nuclear reactor when a neutron is captured by a fuel nucleus (generally uranium) the nucleus splits releasing radioactive particles (or undergoes fission). Hence if we decrease the neutron flux we decrease the radioactivity. The most common way to reduce the neutron flux is include neutron-absorbing control rods. These control rods can be partially inserted into the reactor core to reduce the reactions. The control rods are very important because the reaction could run out of control if fission events are extremely frequent. In modern nuclear power plants, the insertion of all the control rods into the reactor core occurs in a few seconds, thus halting the nuclear reaction as rapidly as possible. In addition, most reactors are designed so that beyond optimal level, as the temperature increases the efficiency of reactions decreases, hence fewer neutrons are able to cause fission and the reactor slows down automatically.

2. Maintenance of Core Cooling

In any nuclear reactor some sort of cooling is necessary. Generally nuclear reactors use water as a coolant. However some reactors which cannot use water use sodium or sodium salts.

3. Maintenance of barriers that prevent the release of radiation

There is a series of physical barriers between the radioactive core and the environment. For instance at the Darling Nuclear Generation Station in Canada the reactors are enclosed in heavily reinforced concrete which is 1.8m thick. Workers are shielded from radiation via interior concrete walls. A vacuum building is connected to the reactor buildings by a pressure relief duct. The vacuum building is a 71m high concrete structure and is kept at negative atmospheric pressure. This means that if any radiation were to leak from the reactor it would be sucked into the vacuum building and therefore prevented from being released into the environment.

The design of the reactor also includes multiple back-up components, independent systems (two or more systems performing the same function in parallel), monitoring of instrumentation and the prevention of a failure of one type of equipment affecting any other.

Further, regulation requires that a core-meltdown incident must be confined only to the plant itself without the need to evacuate nearby residence.

Safety is also important for the workers of nuclear power plants. Radiation doses are controlled via the following procedures,

The handling of equipment via remote in the core of the reactor

Physical shielding

Limit on the time a worker spends in areas with significant radiation levels

Monitoring of individual doses and of the work environment

User Renzop
by
5.2k points