55.7k views
2 votes
8^(2x+3)+8^(2×+1)-8^2×=519*2^2010
x=?

User Bmcculley
by
5.9k points

1 Answer

3 votes

Answer:

x=335

Explanation:

The given expression is


8^(2x+3)+8^(2x+1)-8^(2x)=519*2^(2010)

Apply the reverse of the product rule:
a^(m+n)=a^m* a^n


8^(2x)* 8^3+8^(2x)* 8^1-8^(2x)=519*2^(2010)

Factor on the left


(8^3+ 8^1-1})8^(2x)=519*2^(2010)

Evaluate


(512+ 8-1})8^(2x)=519*2^(2010)

Simplify:


519*8^(2x)=519*2^(2010)

Divide through by 519


8^(2x)=2^(2010)

Write the the LHS as a power of 2.


2^(3*2x)=2^(2010)


2^(6x)=2^(2010)

Equate the exponent


6x=2010

Divide by 6

x=335